Stress-dependent opposing roles for mitophagy in aging of the ascomycete Podospora anserina

نویسندگان

  • Laura Knuppertz
  • Verena Warnsmann
  • Andrea Hamann
  • Carolin Grimm
  • Heinz D Osiewacz
چکیده

Mitochondrial dysfunction is causatively linked to organismal aging and the development of degenerative diseases. Here we describe stress-dependent opposing roles of mitophagy, the selective autophagic degradation of mitochondria, in aging and life-span control. We report that the ablation of the mitochondrial superoxide dismutase which is involved in reactive oxygen species (ROS) balancing, does not affect life span of the fungal aging model Podospora anserina, although superoxide levels are strongly increased and complex I-dependent respiration is impaired. This unexpected phenotype depends on functional autophagy, particularly mitophagy, which is upregulated during aging of this mutant. It identifies mitophagy as a prosurvival response involved in the control of mitohormesis, the well-known beneficial effect of mild mitochondrial oxidative stress. In contrast, excessive superoxide stress turns mitophagy to a prodeath pathway and leads to accelerated aging. Overall our data uncover mitophagy as a dynamic pathway that specifically responds to different levels of mitochondrial oxidative stress and thereby affects organismal aging.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of paraquat-induced oxidative stress on gene expression and aging of the filamentous ascomycete Podospora anserina

Aging of biological systems is influenced by various factors, conditions and processes. Among others, processes allowing organisms to deal with various types of stress are of key importance. In particular, oxidative stress as the result of the generation of reactive oxygen species (ROS) at the mitochondrial respiratory chain and the accumulation of ROS-induced molecular damage has been strongly...

متن کامل

Identification of autophagy as a longevity-assurance mechanism in the aging model Podospora anserina

The filamentous ascomycete Podospora anserina is a well-established aging model in which a variety of different pathways, including those involved in the control of respiration, ROS generation and scavenging, DNA maintenance, proteostasis, mitochondrial dynamics, and programmed cell death have previously been demonstrated to affect aging and life span. Here we address a potential role of autoph...

متن کامل

The S-adenosylmethionine dependent O-methyltransferase PaMTH1: a longevity assurance factor protecting Podospora anserina against oxidative stress

PaMTH1 is an O-methyltransferase catalysing the methylation of vicinal hydroxyl groups of polyphenols. The protein accumulates during ageing of Podospora anserina in both the cytosol and in the mitochondrial matrix. The construction and characterisation of a PaMth1 deletion strain provided additional evidence about the function of the protein in the protection against metal induced oxidative st...

متن کامل

Effect of paraquat-induced oxidative stress

Aging of biological systems is influenced by various factors, conditions and processes. Among others, processes allowing organisms to deal with various types of stress are of key importance. In particular, oxidative stress as the result of the generation of reactive oxygen species (ROS) at the mitochondrial respiratory chain and the accumulation of ROS-induced molecular damage has been strongly...

متن کامل

PaTrx1 and PaTrx3, two cytosolic thioredoxins of the filamentous ascomycete Podospora anserina involved in sexual development and cell degeneration.

In various organisms, thioredoxins are known to be involved in the reduction of protein disulfide bonds and in protecting the cell from oxidative stress. Genes encoding thioredoxins were found by searching the complete genome sequence of the filamentous ascomycete Podospora anserina. Among them, PaTrx1, PaTrx2, and PaTrx3 are predicted to be canonical cytosolic proteins without additional domai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2017